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Virtual Machine-level Software Transactional Memory:
Principles, Techniques, and Implementation

Final report for AFOSR Grant FA9550-14-1-0143
PI: Binoy Ravindran

ECE Department, Virginia Tech
302 Whittemore Hall, Blacksburg, VA 24061

Phone: 540-231-3777, Fax: 540-231-3362, E-mail: binoy@vt.edu

Abstract

Software transactional memory (STM) has emerged as an easy to program synchronization
abstraction for multicore computer architectures. But performance of current STM frameworks
are inferior and heavily influenced by infrastructure resource management.

The project’s first major result is ByteSTM, a virtual machine-level Java STM implemen-
tation. Being implemented at the VM-level, which enables direct memory accesses, ByteSTM
avoids Java garbage collection overhead by manually managing memory for transactional meta-
data, and provides pluggable support for implementing different STM algorithms. The project’s
experimental studies revealed throughput improvement over other non-VM STMs by 6-70% on
micro-benchmarks and by 7-60% on macro-benchmarks. ByteSTM is publicly release as open-
source.

The project’s second major result is a set of theoretical results on ensuring the Disjoint-
Access Parallelism (DAP) property for STM implementations. Assumed a DAP TM that provides
invisible and wait-free read-only transactions, the project proved that relaxing the Real-Time
Order (RTO) is necessary. This result motivated the definition of Witnessable Real-Time Order,
a weaker variant of RTO that restricts RTO to directly conflicting transactions only. Finally, the
project established lower bounds on the time and space complexity of DAP TM implementations.
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I. Overview of Project Achievements

This project investigates theoretical and practical aspects of Software Transactional Memory
(STM) implementations. STM is a growing programming abstraction for developing concurrent
applications. With STM, the complexity of synchronizing multithreaded access to a set of shared
data (or objects hereafter) is no longer a burden for the application programmer; they can simply
focus on the application business logic and rely on the STM library to guarantee correct concurrent
execution. Thanks to STM, the effort of designing, developing, and maintaining a concurrent,
multithreaded application is significantly alleviated.

The project’s most significant accomplishment towards the practice of STM is the design and
implementation of ByteSTM [31], [30], a virtual machine-level Java STM implementation built by
extending Jikes RVM. In ByteSTM, a transaction is not restricted to methods and can surround
any block of code. Memory bytecode instructions reachable from a transaction are translated such
that the resulting native code executes transactionally. Given its JVM integration, ByteSTM
can access, allocate, and manage memory directly, thus overcoming restrictions of the current
JVM design. ByteSTM has a modular architecture, which allows different STM algorithms to be
easily plugged in (three well-known algorithms have been already: TL2 [12], RingSTM [37], and
NOrec [11]). The conducted experimental study revealed a 6-70% throughput improvement over
other non-VM STMs on micro-benchmarks and a 7-60% improvement on macro-benchmarks.

ByteSTM is open source and is freely available at http://hydravm.org/bytestm. It provides
usable and high-performance STM support for Java applications, and has been transitioned to the
STM community at large with an increasing number of citations (e.g., [15], [36]). It contributes
to the broad dissemination of the STM abstraction in the (not only research) community.

The project’s most significant accomplishment towards the theory of STM is a set of results
regarding the impossibility, possibility, and inherent cost of STM implementations that provide
the Disjoint-Access Parallelism (DAP) property [32]. DAP is considered one of the most desirable
properties for providing scalable STM algorithms; roughly, two concurrent threads are allowed to
conflict on some shared resource (e.g., objects or meta-data) only if the application itself demands
that. Given its appealing purpose, this project has investigated what can (and cannot) be done
while preserving DAP. First, it was proven that relaxing Real-Time Order (RTO) is necessary
for an STM implementation that ensures DAP as well as two properties that are regarded as
important for maximizing efficiency in read-dominated workloads; namely, having invisible and
wait-free read-only transactions. This result provided the base for introducing Witnessable Real-
Time Order (WRTO), a weaker variant of RTO that demands enforcing RTO only between
directly conflicting transactions. WRTO makes it possible to design a strictly DAP STM with
invisible and wait-free read-only transactions while preserving strong progressiveness for write
transactions and an isolation level known in literature as Extended Update Serializability [2] and
establishes a lower bound on the time and space complexity of DAP STM implementations that
have invisible and wait-free read-only transactions.

The project’s findings enrich the common knowledge of DAP STM implementations and provide
a better understanding for STM designers about the inherent costs and limitations of adopting
DAP.

The rest of this report is organized as follows: in Section II we detail ByteSTM, the major
achievement towards the practice of STM; in Section III we provide the description of the major
accomplishments towards the theory of STM; and in Section IV we conclude the report by
summarizing the project’s deliverables (i.e., software and publications).

II. ByteSTM, a Java virtual machine-based STM implementation

Transactional Memory (TM) [21] is an attractive programming model for multicore architec-
tures that promises to help the programmer in the implementation of parallel and concurrent
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applications. TM has been proposed in hardware (HTM, e.g., [10]), in software (STM, e.g., [27]),
and in combination (HybridTM, e.g., [28]). HTM has the lowest overhead, but transactions
are limited in space and time. STM does not have such limitations, but has higher overhead.
HybridTM avoids these limitations. Given STM’s hardware-independence, which is a compelling
advantage, we focus on STM. STM implementations can be classified into three categories: library-
based, compiler-based, and virtual machine-based.

- Library-based STMs add transactional support without changing the underlying language.
Instrumentation is used to transparently add transactional code to the atomic sections (e.g.,
begin, transactional reads/writes, commit).

- Compiler-based STMs (e.g., [25], [23]) support implicit transactions transparently by adding
new language constructs (e.g., atomic). The compiler then generates transactional code that
calls the underlying STM library. Compiler-based STMs can optimize the generated code and
do overall program optimization.

- VM-based STMs, which have been less studied, include [20], [9], [38], [1]. Transactional support
is implemented inside the JVM to get the benefits of a VM-managed environment.

ByteSTM is built by modifying Jikes RVM [3], a Java research virtual machine implemented
in Java, using the optimizing compiler. ByteSTM is implicitly transactional: the program only
specifies the start and end of a transaction and all memory operations (loads and stores) inside
these boundaries are implicitly transactional. This simplifies the code inside the atomic block and
also eliminates the need for making a transactional version of each memory load/store instruction,
thereby keeping the number of added instructions minimal. When xBegin (i.e., the transaction’s
beginning) is executed, the thread enters transactional mode. In this mode, all writes are isolated
and execution of instructions proceeds optimistically until xCommit (i.e., the transaction’s commit)
is executed. At that point, the transaction is checked against other concurrent transactions for
conflicts. If there are no conflicts, the transaction is allowed to commit and only at this point do
all transaction modifications become externally visible to other transactions. If the commit fails,
all modifications are discarded and the transaction restarts from the beginning.

ByteSTM monitors memory accesses at the field level, not at the object level. Field-based
granularity scales well and eliminates false conflicts resulting from two transactions changing
different fields of the same object [27].

A. Metadata

Working at the VM level allows changing thread headers without modifying program code. For
each thread that executes transactions, the metadata added includes the read-set, the write-set,
and other STM algorithm-specific metadata. Metadata added to the thread header is used by all
transactions executed in the thread. Since each thread executes one transaction at a time, there
is no need to create new metadata for each transaction, allowing reuse. Also, accessing a thread’s
header is faster than using Java’s ThreadLocal abstraction.

B. Memory Model

At the VM-level, the physical memory addresses of each object’s fields can be easily obtained.
Since ByteSTM is field-based, the address of each field is used to track memory reads and writes.
A conflict occurs only if two transactions modified the same field of an object. Since arrays are
objects in Java, memory accesses to arrays are tracked at the element level, which eliminates
unnecessary aborts.

An object instance’s field’s absolute address equals the object’s base address plus the field’s
offset. A static object’s field’s absolute address equals the global static memory space’s address
plus the field’s offset. Finally, an array element’s absolute address equals the array’s address plus
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the element’s index in the array (multiplied by the element’s size). Thus, our memory model is
simplified as: base object plus an offset for all cases.

Using absolute addresses is limited to non-moving GCs only (i.e., a GC that releases unreachable
objects without moving reachable objects, like the mark-and-sweep GC). In order to support
moving GCs, a field is represented by its base object and the field’s offset within that object.
When the GC moves an object, only the base object’s address is changed. All offsets remain the
same. ByteSTM’s write-set is part of the GC root-set. Thus, the GC automatically changes the
saved base objects’ addresses as part of its reference-updating phase.

To simplify how the read-set and write-set are handled, we use a unified memory access scheme.
At a memory load, the information needed to track the read includes the base object and the
offset within that object of the read field. At a memory store, the base object, the field’s offset,
the new value, and the size of the value are the information used to track the write. When data
is written back to memory, the write-set information (base object, offset, value, and length of
the location) is used to store the committed values correctly. This abstraction also simplifies the
code, as there is now no need to differentiate between different data types because they are all
handled as a sequence of bytes in the memory. The result is simplified code that handles all data
types in the same way, yielding faster execution.

ByteSTM has been designed to natively support opacity [17]. In fact, when an inconsistent
read is detected in a transaction, the transaction is immediately aborted. Local variables are
then restored and the transaction is restarted by throwing an exception. The exception is caught
just before the end of the transaction loop so that the loop continues again. Note that throwing
an exception is not expensive if the exception object is preallocated, eliminating the overhead
of creating a stack trace every time the exception is thrown. A stack trace is not required for
this exception object because it is used only for doing a long jump. The result is similar to
setjmp/longjmp in C.

C. Garbage Collector

One major drawback of implementing STM for Java (or any managed language) is the GC [29].
STM uses metadata to keep track of transactional reads and writes, which requires allocating
memory for the metadata and then releasing it when not needed. Frequent memory allocation
(and implicit deallocation) forces the GC to run more frequently to release unused memory,
increasing STM overhead.

Some STM implementations solve this problem by reducing memory allocations and recycling
allocated memory. For example, [27] uses object pooling, wherein objects are allocated from and
recycled back to a pool of objects (with the heap used when the pool is exhausted). However,
allocation is still done through the Java memory system and the GC checks if the pooled objects
are still referenced.

Since ByteSTM is integrated into the VM, its memory allocation and recycling is done outside
the control of the Java memory system: memory is directly allocated and recycled. STM’s memory
requirement, in general, has a specific lifetime. When a transaction starts, it requires a specific
amount of metadata, which remains active for the transaction’s duration. When the transaction
commits, the metadata is recycled. Thus, manual memory management does not increase the
complexity or overhead of the implementation.

The GC causes another problem for ByteSTM, however. ByteSTM stores intermediate changes
in a write buffer. Thus, the program’s newly allocated objects will not be referenced by the
program’s variables. The GC scans only the program’s stack to find objects that are no longer
referenced. Hence, it will not find any reference to the newly allocated objects and will recycle
their memory. When ByteSTM commits a transaction, it will therefore be writing a dangling
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pointer. We solve this problem by modifying the behavior of adding an object to the write-set.
Instead of storing the object address in the write-set entry value, the object is added to another
array (i.e., the “objects array”). The object’s index in the objects array is stored in the write-set
entry value. Specifically, if an object contains another object (e.g., a field that is a reference), we
cannot save the field value as a primitive type (e.g., the absolute address) since the address can
be changed by the GC. The field value is therefore saved as an object in the objects array, which
is available to the set of roots that the GC scans. The write-set array is another source of roots.
So, the write-set contains the base objects and the objects array contains the object fields within
the base objects. This prevents the GC from reclaiming the objects. Our approach is compatible
with all GCs available in Jikes RVM and we believe that this approach is better than modifying
a specific GC.

D. STM Algorithms

ByteSTM’s modular architecture allows STM algorithms to be easily “plugged in.” We imple-
mented three algorithms: TL2 [12], RingSTM [37], and NOrec [11]. Our rationale for selecting
these three is that they are well-known in literature. Additionally, they cover different points in
the performance/workload tradeoff space: TL2 is effective for long transactions and a moderate
number of reads, and it scales well with a large number of writes; RingSTM is effective for
transactions with a high number of reads and a small number of writes; NOrec has better
performance with a small number of cores and has no false conflicts since it validates by value.

Plugging a new algorithm into ByteSTM is straightforward: one needs to implement read
barriers, write barriers, transaction start, transaction end, and any other algorithm-specific helper
methods. All these methods are in one class, “STM.java”. No prior knowledge of Jikes RVM is
required and porting a new algorithm to ByteSTM requires only understanding the ByteSTM
framework.

E. Experimental Evaluation

To understand how ByteSTM, a VM-level STM, stacks up against non VM-level STMs, we
conducted an extensive experimental study. The performance study also wanted to investigate
whether any performance gain from a VM-level implementation is algorithm-independent. Thus,
we compared ByteSTM against non-VM STMs, with the same algorithm inside the VM versus
“outside”it. Our competitor non-VM STMs include Deuce, ObjectFabric, Multiverse, and JVSTM.

We used a 48-core machine (four AMD Opteron Processors, each with 12 cores running at 1700
MHz) with 16 GB of RAM. The machine ran Ubuntu Linux 10.04 LTS 64-bit. Our test applications
included both micro-benchmarks (i.e., data structures) and a macro-benchmark (i.e., STAMP [8]).
1) Micro-Benchmarks: Each data structure was used to implement a sorted integer set interface

with set size 256 and set elements in the range 0 to 65536. Writes represented add and remove
operations, and they kept the set size approximately constant during the experiments. Different
ratios of writes and reads were used to measure performance under different levels of contention:
20% and 80% writes. We also varied the number of threads in exponential steps up to 48.

Linked-list operations were characterized by a high number of reads (ranging from 70 at low
contention to 270 at high contention), caused by traversing the list from the head to the required
node, and only a few writes (about 2). This resulted in long transactions. Moreover, we observed
that such transactions suffer from a high number of aborts (our abort ratio was from 45% to
420%), since each transaction keeps all visited nodes in its read-set and any modification to those
nodes by another transaction’s add or remove operation will abort the transaction.

Figure 1 shows the results. ByteSTM has three curves: RingSTM, TL2, and NOrec. In all
cases, ByteSTM/NOrec achieved the best performance because it uses an efficient read-set data
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Fig. 1

Throughput for Linked-List. Higher is better.

structure based on open addressing hashing. ByteSTM/RingSTM came next because it has no
read-set and uses a bloom filter as a read signature, with the performance being affected by
the bloom filter’s false positives. This was followed by ByteSTM/TL2, which was affected by its
sequential read-set. Deuce’s performance was the best between other STM libraries. Other STMs
performed similarly, and all of them had very low throughput. Non-VM implementations of each
algorithm performed in a similar manner but with lower throughput. ByteSTM outperformed
non-VM implementations by 15–70%.
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2) Macro-Benchmark: Vacation, an application from the STAMP suite, has medium-length
transactions, medium read-sets, medium write-sets, and long transaction times (compared with
other STAMP benchmarks). We conducted two experiments: low contention and high contention.
ByteSTM/NOrec had the best performance under both low and high contention conditions.
The efficient read-set implementation contributed to its performance. However, it did not scale
well: ByteSTM/RingSTM suffered from a high number of aborts due to false positives and long
transactions, so it started with good performance but degraded quickly. ByteSTM outperformed
non-VM implementations by an average of 15.7% in low contention and 18.3% in high contention.
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III. Disjoint-access parallelism: impossibility, possibility, and cost of STM
implementations

Disjoint-access parallelism (or DAP) [26] is a long-studied property that assesses the ability
of a STM implementation to avoid any contention on shared objects (also called base objects)
between transactions that access disjoint data sets.

The existing STM literature has established that having DAP and serializability of committed
transactions in the same STM implementation is impossible under certain conditions for read-
only transactions or different progress guarantees [4], [34], [16], [14], [7]. In particular, Attiya
et al. [4] proved that a STM cannot be weak DAP (a weaker version of the original DAP [26])
while ensuring minimal progressiveness [19] for write transactions (a progress condition weaker
than obstruction-freedom [22]) and providing invisible and wait-free read-only transactions if the
correctness guarantee is (Strict) Serializability [6]. More recently, Bushkov et al. [7] proved the
impossibility of implementing a strict DAP [16] (a stronger version of the original DAP [26])
STM that guarantees obstruction-freedom and Weak Adaptive Consistency, which is weaker than
Serializability.

Unfortunately, the several consistency criteria that have been proposed for STM, such as
opacity [17], virtual world consistency [24], and TMS1 [13], require at least serializability of
committed transactions. However, the constraint for read-only transactions to never change the
status of memory, i.e., being invisible, as well as their ability to always commit in a finite number
of steps, i.e., being wait-free, are desirable requirements for enhancing the performance of STM
in the case of read-dominated workloads. Therefore, this project pursued the objective of finding
the strongest correctness and progress guarantees that a DAP STM algorithm can ensure while
having invisible and wait-free read-only transactions. In addition, for those guarantees, the project
studied unavoidable costs to consider in terms of both time and space complexity.

In this context, we proved two novel impossibility results that have to be taken into account
while designing a DAP STM. Specifically, we proved that if one defines as target correctness cri-
terion any criterion that includes Real-Time Order (RTO), i.e., guaranteeing that non-concurrent
transactions appear as though they were executed in the order of their commits, then it is
impossible to ensure wait-free read-only transactions, obstruction-free write transactions, and
the weakest form of DAP. We also proved that, even when assuming weakly progressive write
transactions [18], we still have an impossibility result if we enforce invisibility for read-only
transactions.

These results highlight the need for relaxing RTO in order to implement any DAP STM that
guarantees wait-free and invisible read-only transactions. Indeed, we showed that, by adopting a
weaker variant of RTO, i.e., Witnessable Real-Time Order (WRTO), which only enforces RTO
among directly conflicting transactions, it is possible to design a STM with wait-free and invisible
read-only transactions. In particular, we proposed the first STM implementation that guarantees
the strongest variant of DAP, strong progressiveness for write transactions, and wait-free and
invisible read-only transactions. This STM provides WRTO and an interesting consistency crite-
rion strictly weaker than opacity, i.e., Extended Update Serializability [2] (EUS). EUS guarantees
serializability of committed write transactions, and it ensures that each transaction observes a
state produced by a serializable schedule.

Despite the theoretical relevance of this algorithm, the proposed STM comes with overheads,
which can hinder its practical relevance. However, we proved that these costs are actually nec-
essary, by deriving two lower bounds on the space and time complexity of any DAP STM that
guarantees wait-free and invisible read-only transactions, WRTO, and obstruction-freedom or
weak progressiveness for write transactions, when considering a consistency criterion strictly
weaker than EUS, i.e., Consistent View [2]. Informally, Consistent View allows a specific type of
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non-serializable schedule, but it ensures that transactions read from a causally consistent snapshot
and prevents observing the effects of aborted transactions.

A. Impossibility Results on Disjoint-Access Parallel STM

The first theoretical result of this project regards the possibility of having a DAP STM that
guarantees RTO. This is a fundamental question because it only focuses on the correctness of non-
concurrent transactions, which should appear as executed in the order defined by their commits
(by preserving RTO indeed), and the result is independent of any other correctness guarantee
defined for concurrent transactions. We proved that it is impossible to design such a STM if that
has to also guarantee wait-free read-only transactions and obstruction-free write transactions.

The result is independent of the visibility of read-only transactions, therefore also proving that
there cannot exist any STM that meets the lower bound defined in [4] if write transactions are
obstruction-free. Indeed, if on one side the lower bound defines a necessary condition on the
number of write operations a wait-free read-only transaction has to apply in a Strict Serializable
and DAP STM, on the other side our result states that those write operations are not sufficient
to guarantee RTO and hence Strict Serializability (since it includes RTO).

We also investigated whether or not we can combine all the properties above by considering
weakly progressive write transactions (namely, write transactions abort only if they encounter a
conflict). In this case we proved that the impossibility of combining RTO and wait-free read-only
transactions still holds if read-only transactions are invisible.

The intuition to prove the two impossibility results is the following: we showed that any DAP
STM that guarantees WRTO must necessarily accept a history that violates RTO between two
non-conflicting transactions.

B. A Strict Disjoint-Access Parallel STM

Since our impossibility results proved that RTO cannot be guaranteed by a DAP STM that
provides wait-free and invisible read-only transactions, we also investigated relaxing RTO in order
to have such a STM. The result is a STM obtained by adopting Witnessable Real-Time Order
(WRTO): it is possible to implement a STM that guarantees the strongest variant of DAP, wait-
free and invisible read-only transactions, progressive write transactions, and a correctness criterion
whose semantics are very close to those provided by opacity or virtual world consistency. This
consistency criterion, known in literature as Extended Update Serializability (EUS) [2], [33],
guarantees the serializability of the history of committed write transactions — hence ensuring
that the state of the STM is updated without anomalies. Further, analogously to opacity, virtual
world consistency, and TMS1, EUS provides Consistent View.

Intuitively, the above properties are achieved as follows. Committed write transactions can be
guaranteed to be serializable without sharing any global information and only leveraging metadata
associated with transactional objects by adopting a scheme similar to the DAP version of TL2 [5].
On the other hand, Consistent View and WRTO can be ensured by combining a multi-version
scheme that allows a read operation by a transaction T to never incur wait conditions and to
always return the right version v such that v was not committed by a transaction T ′ that causally
follows T , i.e., v is a correct state observable by T . This is achievable without sharing any global
information (e.g., a global clock, which would violate DAP) and without applying any modification
during the execution of a read operation (invisible read-only transactions) by just exploiting
metadata associated with the committed versions in order to detect the causal dependencies of
commit events.
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C. Time Complexity of Disjoint-Access Parallel STM implementations

Despite the theoretical relevance of the proposed STM, we also proved that it comes with
a non-negligible overhead: a read operation of a read-only transaction may accomplish k · No

steps in order to return the correct value, where k is the number of versions of a transactional
object and No is the total number of transactional objects. We proved that this cost is necessary
even considering only Consistent View and WRTO. In particular, we investigated the costs a DAP
STM has to pay if it guarantees wait-free and invisible read-only transactions when the correctness
guarantee is Consistent View. Roughly, this means that every read operation does not observe
any incorrect state as long as write transactions produce correct states. We also suppose that the
STM guarantees WRTO in order to rule out any trivial implementation of wait-free read-only
transactions in which read operations only observe the initial versions of the transactional objects.

The intuition behind the result is that such a STM cannot always ensure a constant cost for
handling any read operation because a read cannot rely on any shared timestamp to determine
the correct state to be observed (as for TL2 [12] or LSA [35]). In fact, if that were the case, then
the STM would trivially violate DAP. In particular, what we show is that the maximum number
of steps performed by any read operation of read-only transactions for determining whether a
version can be observed without violating Consistent View is Ω(No).

D. Space Complexity of Disjoint-Access Parallel STM implementations

In addition to showing the inherent temporal costs a DAP STM must pay in order to execute
invisible and wait-free read-only transactions, and if it has to also combine at least Consistent
View and WRTO, we also focused on the memory occupancy such a STM would require. That
is because the STM proposed in this project requires each version of a transactional object to
keep a vector clock as big as the maximum number of concurrent processes (Np). The outcome
of our investigation was analogous to the one obtained for the time complexity: in the common
case where Np is lesser than the number of objects (No), that spatial cost is necessary.

Furthermore, in general we proved a lower bound that holds assuming Consistent View as
correctness guarantee, WRTO, and either weak progressiveness or obstruction-freedom for write
transactions. If a DAP STM has to jointly ensure those properties then the space complexity for
each version of a transactional object is Ω(m), where m = min(No, Np).

To prove that, we used an innovative technique that shows an equivalence between the problem
of detecting cycles in the conflict graph of a history generated by DAP STM and determining
causality in a distributed message passing system. The intuition behind the proof is that whenever
a read-only transaction executes a read operation, it needs to detect whether that operation creates
a cycle with one anti-dependence edge (which would violate Consistent View) in the conflict graph
associated with the current history. Due to the existence of the DAP requirement, this check has to
be performed without indiscriminately accessing all the information associated with the conflict
graph, but only extracting this information via the base objects associated with the accessed
transactional objects.
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IV. Summary of Project’s Deliverables: Software and Publications

The results accomplished by this project have been publicly released as open-source software
and research papers published at international conferences. In the following we summarize them:

- Software:

– ByteSTM is open-sourced and is freely available at http://hydravm.org/bytestm.

- Publications:

– M. Mohamedin, B. Ravindran, and R. Palmieri. Bytestm: Virtual machine-level java software
transactional memory. In Coordination Models and Languages, 15th International Confer-
ence, COORDINATION, Florence, Italy, June 3-5, 2013.

– M. Mohamedin. ByteSTM: Java Software Transactional Memory at the Virtual Machine
Level. Master’s thesis, Virginia Tech, 2012. Available at http://scholar.lib.vt.edu/theses/
available/etd-02222012-091827/.

– S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia. Disjoint-access parallelism:
Impossibility, possibility, and cost of transactional memory implementations. In ACM Sym-
posium on Principles of Distributed Computing, PODC, Donostia-San Sebastian, Spain, July
21-23, 2015.
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